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Abstract: Extracellular vesicles (EVs) have gained considerable attention as vital circulating biomark-
ers since their structure and composition resemble the originating cells. The investigation of EVs’
biochemical and biophysical properties is of great importance to map them to their parental cells and
to better understand their functionalities. In this study, a novel frequency-dependent impedance mea-
surement system has been developed to characterize EVs based on their unique dielectric properties.
The system is composed of an insulator-based dielectrophoretic (iDEP) device to entrap and immo-
bilize a cluster of vesicles followed by utilizing electrical impedance spectroscopy (EIS) to measure
their impedance at a wide frequency spectrum, aiming to analyze both their membrane and cytosolic
charge-dependent contents. The EIS was initially utilized to detect nano-size vesicles with different
biochemical compositions, including liposomes synthesized with different lipid compositions, as well
as EVs and lipoproteins with similar biophysical properties but dissimilar biochemical properties.
Moreover, EVs derived from the same parental cells but treated with different culture conditions
were characterized to investigate the correlation of impedance changes with biochemical properties
and functionality in terms of pro-inflammatory responses. The system also showed the ability to
discriminate between EVs derived from different cellular origins as well as among size-sorted EVs
harbored from the same cellular origin. This proof-of-concept approach is the first step towards
utilizing EIS as a label-free, non-invasive, and rapid sensor for detection and characterization of
pathogenic EVs and other nanovesicles in the future.

Keywords: extracellular vesicles (EVs); exosome; dielectric properties; electrical impedance spec-
troscopy (EIS); insulator-based dielectrophoretic (iDEP); biosensor
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1. Introduction

Extracellular vesicles (EVs), including exosomes (40–150 nm) and microvesicles are
released from many cell types into extracellular spaces and are circulated in almost all bioflu-
ids, including blood, urine, breast milk, cerebral fluids, and saliva [1]. They are taken up by
neighboring or distant cells and subsequently modulate functions of the recipient cells. EVs
are composed of a lipid bilayer membrane containing unique receptors and tetraspanin
surface markers. They also encapsulate exclusive cargos in their lumen, including proteins,
lipids, and nucleic acids [2]. The unique composition of EVs reflects their parental cells
with both physiological and pathological relevance [3]. Thus, detection and characteriza-
tion of EV surface markers and cargos offers great opportunity for early diagnosis and
monitoring the prognosis of several diseases, including cancer, cardiovascular disease,
and degenerative disorders [4]. The state-of-the-art technologies are mainly based on EVs’
biophysical characterization, including their size distribution, density, and morphology,
and can be listed as transmission electron microscopy (TEM) [5], nanoparticle tracking
analysis (NTA) [6], and density gradient separation [7]. However, these techniques are
either low throughput and time-consuming to operate or do not provide information with
regards to EV’s biochemical properties, cellular origins, and functionality. Thus, in recent
years, flow cytometry has been adopted as a high-throughput method for characterization
of EVs based on their biochemical properties by labeling their specific protein markers,
membrane lipids, or nucleic acids [8]. Although flow cytometry has shown promising
attributes, it is a label-based technique which relies on the specificity of antibodies to the
targeted receptors. More importantly, flow cytometry lacks accuracy for characterization of
EVs with a smaller size distribution, since the scatter sensitivity of current technologies
is limited to EVs larger than ~100 nm [9]. Other analytical methods, such as western blot,
mass-spectrometry (MS), microarray technology, and RNA sequencing, are applied to study
the abundance of EVs’ proteins, lipids, and nucleic acids [10]. Although these techniques
are highly sensitive for EVs’ biochemical profiling, they require lysis or labeling steps prior
to screening, which not only add time and cost to the procedure, but also break the structure
of the vesicles. Considering the therapeutic potential of EVs, it is important to maintain
EVs’ intact structure and native composition.

Electrical impedance spectroscopy (EIS) is a label-free and non-invasive technology
that has been developed for measuring the impedance of cells under an alternating current
(AC) over a wide range of frequencies, aiming to characterize their dielectric properties
which resemble their unique membrane and cytosolic compositions [11–13]. This technique
has been widely utilized to differentiate stem cells [14,15] and cancerous cells [16,17]. In the
majority of EIS techniques, a single cell is initially trapped at a fixed position, followed by
impedance measurement of the cell at a selected frequency range [18]. The variation of the
impedance signal provides information on cells’ morphological and electrophysiological
changes which are related to the cells’ intrinsic dielectric properties. Microfluidic flow
cytometry (MFC) is another impedance-based cellular analysis, in which a single cell
dynamically flows through a channel with embedded micro-electrodes. The impedance of a
cell at a wide frequency spectrum is collected for the analysis of its properties, including size,
membrane capacitance, and cytoplasmic conductance [19,20]. However, the application of
EIS tools for detection of EVs with heterogeneous and nanoscale-size distributions has not
been explored.

In this proof-of-concept study, we have adopted EIS to detect a cluster of EVs harvested
from different cellular origins and investigated the correlation between their impedance
responses and their intrinsic dielectric properties, including their unique membrane and
cytosolic characteristics. Although in principle a single vesicle detection would provide
important information with regards to its biochemical composition, similar to a single
cell analysis by EIS, it would be extremely challenging to develop a high throughput
device to cover the heterogeneous size distribution of exosomes (40–150 nm) with high
resolution [21,22]. Thus, in this initial study, we focus on the detection and characterization
of clusters of EVs collected from different parental cells or culture conditions in a high
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throughput manner. In this system, EVs were first immobilized by an iDEP device devel-
oped by our team [23,24], followed by sweeping of an AC field at 100 mVrms from 0.5 MHz
to 50 MHz for impedance measurements by an integrated EIS, as illustrated in Figure 1a.
We initially detected liposomes and carboxylic acid polystyrene (COOH-PS) beads of sim-
ilar size with known dielectric properties and followed this with the construction of an
equivalent circuit model for theoretical validation. The system has further been utilized to
characterize different EVs with different membrane properties as well as to treat them with
different stimuli in culture (Figure 1(bi)) to obtain the impedance responses to variation
in their membrane and cytosolic dielectrics at a wide range of frequencies. Moreover, we
utilized the system to differentiate EVs from lipoproteins and detect EVs derived from
different cellular origins (Figure 1(bii)) and EVs secreted from the same cellular origin but
with different size ranges (Figure 1(biii)). Overall, this approach established a rapid and
label-free detection scheme for characterization of EVs with different biochemical compo-
sitions and potentially functionality, laying a foundation to leverage EVs as circulating
biomarkers for disease diagnosis and prognosis or as personalized therapeutic cargos.
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Figure 1. (a) Schematic of an integrated iDEP and EIS system. The setup was composed of a
borosilicate micropipette placed in between two PDMS chambers. DC bias was applied to trap
vesicles at the pipette’s tip by electrokinetic forces, followed by measuring of the impedance of the
collected vesicles, utilizing the sensing electrodes, at a wide frequency spectrum (0.5 MHz to 50 MHz).
(b) Detection of EVs harvested from: (i) cells under different culture conditions, (ii) different cellular
origins, and (iii) populations of different sizes.

2. Materials and Methods
2.1. Materials

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless other-
wise noted. Silicone elastomer base and curing agents were purchased from Dow Corning
(Elizabethtown, KY, USA). Platinum electrodes were purchased from Alfa Aesar (Haverhill,
MA, USA). Phosphate-buffered saline (PBS) was purchased from Roche Diagnostics (Indi-
anapolis, IN, USA). Borosilicate pipettes with filament (O.D. 1 mm; I.D. 0.78 mm; length
7.5 cm) were obtained from Sutter Instrument (Novato, CA, USA). One-hundred nanometer
liposomes (phospholipid DOPC and cholesterol) were purchased from FormuMax Scien-
tific, Inc. (Sunnyvale, CA, USA). One-hundred nanometer COOH-PS beads were obtained
from Bangs Laboratories, Inc. (Fisher, IN, USA). EVs derived from A549 non-small cell
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lung cancer (NSCLC) were purchased from ATCC (Manassas, VA, USA). Dulbecco’s Modi-
fied Eagle Medium (DMEM), Antibiotic-Antimycotic (Anti-Anti), and Exosome-depleted
Fetal Bovine Serum were purchased from Thermo Fisher Scientific (Waltham, MA, USA).
Fetal Bovine Serum (regular) was purchased from Hyclone Laboratories, Inc. (Logan, UT,
USA). MagCapture Exosome Isolation Kit PS was purchased from FUJIFILM Wako Pure
Chemical Corp. (Richmond, VA, USA). N,N′-Bis [4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]-
3,3′-p-phenylene-bis-acrylamide dihydrochloride (GW4869) was obtained from Cayman
CHEMICAL (Ann Arbor, MI, USA). Cell lines, including Huh-7 hepatoblastoma cells, non-
small cell lung cancer cells (A549), and breast cancer cells (MDA-MB-231), were purchased
from ATCC (Manassas, VA, USA). Materials to build the size-based exosome isolation
platform (ExoTIC [25]) were obtained from McMaster-Carr (Los Angeles, CA, USA), Cytiva
(Marlborough, MA, USA), and Sterlitech (Kent, WA, USA). Culture media for HUVEC cells
were obtained from PromoCell GmbH (Heidelberg, Germany).

2.2. Preparation of Nanovesicles

The detailed procedures for synthesizing 100 nm liposomes with different lipid mem-
brane compositions, preparation of EVs from mouse hepatocytes with embedded green fluo-
rescent protein, EVs from human hepatocellular carcinoma (HuH-7), and EVs from HUVEC
and MDA-MB-231 cell lines are presented in the Supplementary Materials under Methods.

2.3. Device Assembly and Electrical Impedance Measurements

The device consists of two modules: a micropipette-based dielectrophoretic de-
vice for entrapment of the vesicles and a digital impedance analyzer setup for in situ
impedance measurements of the trapped vesicles (Figure S5). The fabrication procedure
of the micropipette-based dielectrophoretic device has been previously reported by our
group [23,24,26]. After assembling the device, 10 µL PBS solution and 10 µL PBS solu-
tion containing the vesicles at concentration of 6.55 × 106 particles/µL were injected into
chambers to immerse the base side and tip side of the pipette respectively. A set of plat-
inum electrodes 0.51 mm in diameter was placed into the chambers for the application of
10 V/cm DC across the pipette for 5 min (Figure S5b). The entrapment of the particles was
simultaneously observed and recorded using an inverted microscope (TE2000-S, Nikon
Instruments, Melville, NY, USA) and a high-resolution camera (Andor NeoZyla 5.5, Oxford
Instruments, Abingdon, UK) at a capture rate of 100 frames/second.

A digital impedance analyzer (HF2LI, Zurich Instruments, Zürich, Switzerland) was
connected to the second set of platinum electrodes with 130 µm diameter. The electrodes
were precisely placed across the trapped particles 20 µm apart via a multi-micromanipulator
system (MPC-200, Sutter Instrument Company, Novato, CA, USA). The impedance of the
trapped particles was measured as an AC field with a peak amplitude of 100 mV swept
from 0.5 MHz to 50 MHz. Frequency-based logarithmic sweep mode was used to record
the amplitude and phase of the impedance signal to generate the impedance spectrum
(Figures S6 and S7). In order to obtain magnitude opacity values at frequencies of interest,
we generated a polynomial curve fit of the measured impedance spectrum using the
MATLAB function Polyfit. The magnitude opacity values were extracted based on the
fitted polynomial function.

For statistical analysis, impedance measurements of each sample were repeated at least
15 times unless otherwise noted and the results were presented as average and standard
deviation. Two-sample t-tests were performed to compare the two population means,
where a p-value < 0.05 (**) was considered statistically significant [27].

3. Results and Discussion

Studies have shown that the impedance of cells under AC field exhibits variation as a
function of frequency. Generally, at a low range of frequency (~kHz), cells are insulating
and resisting the current flowing into their interior, and thus the impedance is dominated
by the cell’s volume. As the frequency increases (>1 MHz), the cell’s membrane exhibits a
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capacitive response due to the polarization of the interface between their membrane and the
surrounding medium; hence, the impedance is influenced by the membrane capacitance.
At higher frequencies (>10 MHz), the electric field (E-field) can penetrate through the
cell membrane and polarize the cytoplasm, and thus the impedance reflects the cytosolic
conductance of the cell [12]. However, other studies have also shown different frequency
responses for phospholipid vesicles with smaller diameters, which reflects their size and
surface charge as well as the dielectric properties of their membranes and cytosol [12,28].
Here, we investigated the impedance of a cluster of EVs harvested from different parental
cells or cells cultured in different culture conditions at a wide range of frequencies (0.5 MHz
to 50 MHz) to detect EVs based on their unique dielectric properties.

3.1. Magnitude Opacity

The impedance signal was reported to be influenced by the concentration of en-
trapped particles [29]. This effect, to some extent, could be compensated by presenting
the impedance signal as magnitude opacity, represented in Equation (1). Magnitude opac-
ity O( f ) is defined as a ratio of the impedance at all frequencies Z( f ) to the impedance
Z
(

fre f erence

)
measured at a size-dependent reference frequency (0.5 MHz) [30]. This con-

cept has been widely applied in cell cytometry to normalize the impedance signal with
respect to a cell’s size and its relative position to the electrodes [31,32]. Thus, the opacity,
O( f ), a volume-independent parameter, would mostly reflect the impedance response of
the EVs in terms of their dielectric properties.

O( f ) =
Z( f )

Z
(

fre f erence

) (1)

To verify that the magnitude opacity provides information about the dielectric prop-
erties of vesicles, cluster of liposomes at two different concentrations were analyzed. We
have previously showed that our device is capable of trapping more vesicles in a form of
clusters as the duration of applied E-field increased [24]. Thus, 100 nm liposomes were
trapped by applying a 10 V/cm E-field for 2- and 5-min intervals. Microscopic images
(Figure 2a) showed that a higher concentration of liposomes was collected after applying
the voltage for 5 min (Figure 2(aii)) compared to a 2 min entrapment interval (Figure 2(ai)).
The number of trapped liposomes were quantified as 2.2 × 106 for 2 min and 5.4 × 106 for
5 min entrapment after releasing them into 10 µL fresh PBS buffer, followed by nanoparticle
tracking analysis (NTA) [23]. The impedances of two clusters were normalized to obtain
the magnitude opacity and the results were compared with the impedance of the system
without liposomes (before entrapment) (Figure 2b and Figure S8). The results indicated no
statistically significant difference (p > 0.05) between the two concentrations of entrapped
liposomes, while they are significantly different from the impedance of the system without
any liposomes. This experiment was repeated with COOH-PS beads and other particles of
similar size distributions to validate the magnitude opacity analysis (data not shown). The
overlapped magnitude opacity of liposomes at two intervals suggested that the opacity
concept can be utilized to mainly analyze the dielectric properties of the vesicles despite
their cluster size.

3.2. Detection of Nanoparticles with Known Dielectric Properties

To verify the concept of impedance spectroscopy for nano-size particles, liposomes
with known dielectric properties were synthesized and measured and a mathematical
model was constructed based on an equivalent circuit to support the empirical results
(Figure S9). Two sets of 100 nm liposomes were synthesized with different membrane
compositions as molar ratios of L-α-phosphatidylcholine (PC) and cholesterol (CH) were
changed from 10-to-1 and 1-to-10 ratios, CH:PC(1:10) and CH:PC(10:1), shown in Figure 3a.
The capacitance and resistance of the PC lipid bilayer were reported in the literature as
0.38 µF/cm2, 1.44 × 104 Ω·cm2, and for the CH bilayer as 0.61 µF/cm2, 2.12 × 106 Ω·cm2
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by electrochemical impedance spectroscopy [33]. Similar sized COOH-PS beads were
selected as reference particles on the basis of their relatively explicit dielectric properties.
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The customized mathematical model was built for the cluster of liposomes and COOH-
PS beads suspended in PBS buffer, which is described in detail in the Supplementary
Materials. In brief, the impedance of the particles (Zmix) was estimated by firstly extracting
the particles’ permittivity and conductivity based on the capacitance and resistance of the
membrane and inner medium to obtain the complex permittivity ε̃mix, followed by esti-
mating Zmix using Maxwell’s mixture equation [12]. The estimated Zmix was implemented
into the equivalent circuit to calculate the impedance of the system. The mathematical
estimation of particles’ impedance at a wide frequency range was presented as magnitude
opacity spectrum. It is important to note that a quantitative comparison of magnitude
opacity values between the empirical results and the values obtained from the mathematical
model is not exact since the mathematical model has been simplified and the impedance
could potentially be influenced by other factors, such as non-ideal characteristics of the
measurement electronics [31,34]. Hence, we mainly focus on the comparison between the
relative differences in particles’ impedance obtained from empirical and mathematical
results, rather than their exact values.

Figure 3b represents the magnitude opacity obtained by the mathematical model of
liposomes with different compositions and COOH-PS beads. Due to enriched content of
highly resistive cholesterol in liposomes with CH:PC(10:1), higher opacity was obtained
when compared to liposomes with CH:PC(1:10) composition. COOH-PS beads have lower
magnitude opacity than liposomes, as previously reported by our group, owing to their
negatively charged carboxylic acid functional groups [29]. Figure 3c shows the empirical
comparison of magnitude opacity for the same particles. A clear difference was also ob-
served empirically for liposomes with different compositions, and the CH:PC(10:1) liposome
showed higher magnitude opacity when compared to the CH:PC(1:10) liposomes, which
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was in agreement with the theoretical model (Figure 3b). These comparisons illustrate that
the EIS has the sensitivity to distinguish between a cluster of nanovesicles based on the
difference in their membrane compositions, which can be translated to their membrane
capacitance and resistance under a wide range of frequencies (10–50 MHz).

3.3. Detection of EVs with Different Membrane Compositions

To further test the sensitivity of the system in terms of membrane compositions, the
EIS was utilized to measure the impedance of EVs that differ solely in their membrane
compositions. To design the experiments, EVs derived from primary hepatocytes were
engineered to have green fluorescent protein (GFP+) embedded in their membrane and
were compared to the EVs harvested from wildtype hepatocytes lacking the GFP protein
(GFP−) [35]. We postulate that the localization of GFP in the membranes of EVs would
lead to the alteration of their dielectric properties, which would be detected by EIS. The
magnitude opacity spectra of two EVs are shown in Figure 4a. Results showed detectable
opacity when GFP− and GFP+ EVs at frequencies higher than 10 MHz (10–50 MHz) were
compared, as illustrated in Figure 4b and Figure S10. Although the differences between
the opacities of EVs are relatively small here, we have observed consistent results with
significant differences (p < 0.05) when various batches of EVs were measured (15 trials) at
different time points. We believe the sensitivity of the system can be further improved by
reducing the dimensions of sensing electrodes at fixed positions in an integrated device
in future studies. The lower magnitude opacity of GFP+ EVs compared to the wild
type (GFP−) could most likely be due to an increase in the membrane conductivity as a
result of the incorporated charged green fluorescent proteins. Based on the constructed
equivalent circuit model (Figure S9a,b), the addition of GFP+ in an EV membrane should
reduce the resistance of the membrane, resulting in a lower magnitude opacity when
compared to the wild type. In addition, the relative opacity of EVs with different membrane
compositions is in agreement with the relative opacity spectrum obtained from liposomes
with different lipid membrane contents, as described above, suggesting that the system
could detect nanovesicles with different membrane compositions at an intermediate to high
frequency range.
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(GFP−) and GPF+ hepatocytes. (b) Significant differences in magnitude opacity were observed at
10 MHz and higher frequencies up to 50 MHz. (** p < 0.05, n = 15).

3.4. Detection of EVs Secreted from Cells Treated under Different Culture Conditions

EVs with diverse membrane and cytosolic compositions were selected by harvesting
them from human hepatocellular carcinoma cell lines under different culture conditions
(Figure 5a). Palmitate acid (PA) a pro-inflammatory fatty acid that can stimulate hepa-
tocytes to generate pro-inflammatory EVs [36] was added to the culture media. PA was
also reported to cause variations in EVs’ lipidomic and miRNA expression profiles [37].
Sphingomyelin phosphodiesterase 3 (SMPD 3) specific inhibitor (GW4869) was reported as
a neutral inhibitor of sphingomyelinase to attenuate the inflammatory effect in cells [38].
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Cells were cultured under the mixture of PA and GW4869 and the harvested EVs were
compared to EVs extracted from cells treated with PA. EVs collected from cells under no
stimulus were selected as a control. The inflammatory response of EVs collected from
these three conditions was examined by culturing EVs with mouse bone marrow-derived
macrophages (BMDM) which were then analyzed for the cytokines interleukin 6 (IL-6) and
tumor necrosis factor alpha (TNF-α) mRNA expression levels via quantitative polymerase
chain reaction (q-PCR) (Figure 5b). Results showed significantly elevated expression levels
of TNF-α and IL-6 mRNAs, reflecting the inflammatory responses of EVs derived from the
PA-treated culture condition. GW4869 inhibited the inflammatory effect caused by PA, and
thus EVs harvested from cells treated with the mixture of PA and GW4869 resulted in a
reduction of mRNA expression levels of TNF-α and IL-6.
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Figure 5. (a) Isolation of EVs from human hepatocellular carcinoma cell lines under normal culture
medium, the PA-treated condition, and the mixture of PA- and GW4869-treated conditions. (b) Mouse
bone marrow-derived macrophages (BMDMs) were cultured with EVs for mRNA expression analysis
by the quantitative polymerase chain reaction of (i) IL-6 mRNA and (ii) TNF-αmRNA. (c) Magnitude
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10–50 MHz. (** p < 0.05, n = 15).

Given the potential variations in the biochemical properties of EVs harvested from
cells under the pro-inflammatory stimulus, EV dielectric properties were studied by EIS
(Figure 5c,d and Figure S11). Figure 5c illustrates the magnitude opacity spectrum of EVs at
a wide range of frequencies (1–50 MHz). EVs harvested from cells treated with PA showed
higher magnitude opacity from 1–15 MHz when compared to the control EVs harvested
from cells treated with no PA or GW4869. This could potentially be due to the increase of
ceramide lipids in the EVs’ membrane composition under PA-tread condition [39]. Since the
capacitance of the ceramide lipid bilayer is lower than the phosphatidylcholine bilayer [40],
EVs containing a higher concentration of ceramide lipid will have a lower membrane
capacitance, resulting in higher magnitude opacity when compared to the control EVs (red
line). Additionally, the opacities of both EVs (PA) and EVs (PA + GW) showed sudden
decreases at 15 MHz when compared to the control EVs which showed a more linear drop
in opacity; this observation could potentially be the signature of EV membrane lipids and
hence the membrane capacitance in the case of EVs (PA) and EVs (PA + GW). However, as
frequency increased to 15 MHz, the opacity of EVs treated with PA + GW increased initially
and showed similar characteristics to the control EVs at intervals of 15–50 MHz, while
PA-treated EVs’ opacities continued to drop linearly. This interesting observation could
potentially illustrate the inhibitory effect of GW4860 on PA-treated cells and consequently
on their secreted EVs, as the opacity spectrum of control EVs and EVs (PA + GW) showed
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similar patterns. In addition, from ~35 MHz to 50 MHz, the opacity of PA-treated EVs
dropped at a faster rate when compared to the control EVs and EVs (PA + GW) with
more plateaued opacities. This fast drop rate in opacity at the higher frequency range for
PA-treated EVs could be associated with the changes in their cytosolic contents, hence the
overexpression of RNA content in their lumen [41], which could lead to the reduction of
cytosolic resistance and magnitude opacity when compared to the control EVs and EVs
(PA + GW) [37].

3.5. Differentiating EVs from Lipoproteins

We further utilized the EIS to discriminate EVs from lipoproteins which share similar
properties in their biophysics but have different biochemical properties. Lipoproteins
have single-layer phospholipids embedded with apolipoproteins and are in charge of
the transportation of water-insoluble hydrophobic lipid molecules into extracellular flu-
ids [42]. Although both lipoproteins and EVs have embedded proteins in their membrane
structure, studies have shown that they have diverse lipid and membrane protein com-
positions [43], which could potentially lead to variations of their dielectric properties. In
addition, lipoproteins encapsulate hydrophobic lipid molecules, including triglycerides
(TGs) and cholesterol in their lumen, while EVs have high concentrations of charged
proteins. The impedance of EVs derived from A549 NSCLC cells and very low-density
(VLD) lipoproteins from human plasma was measured under a wide frequency spectrum
(Figure 6a). The difference between their opacity became significant at frequencies above
10 MHz (10–50 MHz), which is illustrated in Figure 6b and Figure S12. The opacity of EVs
was lower than lipoproteins in all frequencies, which could be attributed to the higher
concentration of overall charged molecules, including proteins and nucleic acids embedded
in their membrane and lumen. At the interval between 1–30 MHz, the opacity of both
vesicles dropped linearly, with an increased drop rate from 30–40 MHz. However, in the
40–50 MHz interval, the opacity increased at 45 MHz, followed by a decrease at 50 MHz.
The fluctuation patterns in opacity at a higher range of frequency could potentially be
correlated with the penetration of the electric field to the vesicles’ lumens and their cor-
responding cytosolic conductance. However, to precisely correlate the membrane and
cytosolic composition of nanovesicles with their frequency-dependent impedance, precise
molecular analyses of vesicles, such as proteomic, lipidomic, and genomic, would need to
be performed. This will be the subject of our future studies.
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3.6. Detection of EVs Derived from Different Cellular Origins

Detection of the dielectric properties of EVs harvested from different cellular origins is
of particular interest since the secreted EVs could provide essential biochemical information,
including nucleic acid and protein contents that were inherited from the parental cells [44].
Here, we utilized EVs harvested from two common cell lines, umbilical vein endothelial
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cells (HUVECs) and epithelial human breast cancer cells (MDA-MB-231), to investigate
their differences by EIS. EVs secreted from MDA-MB-231 cells are widely studied for the
enriched oncogenes in the lumen which lead to oncogenic transformation [45]. HUVEC cell
lines were commonly used to study the role of angiogenic EVs secreted from MDA-MB-
231 cell lines in tumor growth and metastasis [46]. When the impedance of EVs derived
from these two cell lines were compared, significantly higher magnitude opacities were
observed for MDA-MB-231-derived EVs at frequencies of 10 MHz to 20 MHz (Figure 7a and
Figure S13). However, as the frequency increased above 20 MHz, the difference between
their opacities became insignificant (at 30 MHz and 40 MHz), and as the frequency reached
50 MHz, the opacity of EVs derived from HUVECs exceeded the EVs harvested from MDA-
MB-231 cells. Given the previous observations, we postulated that the shift in magnitude
opacity at frequencies above 30 MHz could potentially be caused by a dominant effect of
cytosolic conductance in EVs which as a result overturned the difference in opacity caused
by their membrane capacitance. Although these initial observations provide an insight with
regard to cytosolic and membrane effects on EVs’ dielectric properties at different ranges
of the frequency spectrum, more comprehensive and precise studies of EVs’ molecular
profiles need to be conducted to correlate the exact role of membrane and cytosol with their
frequency-dependent dielectric properties.
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Figure 7. The magnitude opacity comparison of EVs extracted from (a) human umbilical vein
endothelial cells (HUVECs) and epithelial human breast cancer (MDA-MB-231) cells. (** p < 0.05,
n = 15.) (b) (i) Magnitude opacity spectrum of EVs at different size ranges isolated from an MDA-
MB-231 cell line by ExoTIC. (ii,iii) Bar plots of magnitude opacity comparison of four EVs subsets at
10 MHz and 50 MHz. (** p < 0.05, n = 15).

3.7. Detection of EVs with Different Size Distributions

Besides the effect of parental cells on EVs biochemical and biophysical characteristics,
the heterogeneity of EVs in their size also adds to the complexity of their characteriza-
tion [47]. It has been reported that EVs have different biochemical properties, including
protein, lipid, and nucleic acid contents, at different size ranges [48,49]. For instance,
Zhang et al. showed that EVs derived from an MDA-MB-231 cell line at different size
ranges have different biochemical and biophysical properties, including zeta potential, stiff-
ness, lipid composition, and proteomic and nucleic acid payload [48]. Thus, we measured
the impedance of EVs derived from an MDA-MB-231 cell line at different size distributions
to investigate the correlation between EVs’ size and their dielectric properties. EVs derived
from MDA-MB-231 cells were isolated utilizing a size-based sorting platform, ExoTIC,
developed by our group [25]. Figure 7(bi) shows the magnitude opacity spectrum of EVs at
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different size ranges, and the results illustrated significant differences between each group
of EVs (Figure 7(bii,biii) and Figure S14). An interesting pattern in this set of data has been
observed in which the magnitude opacity increased as the EVs’ size distribution increased,
for instance, a lower magnitude opacity obtained for EVs with a 30–50 nm size range when
compared to EVs with a 50–80 nm range, and so on. This could potentially be explained
as a result of the relatively higher ratio of charged molecules, including nucleic acids and
proteins, to the ratio of inert lipid bilayer membrane in EVs of smaller size when compared
to EVs of a larger size. Although this preliminary data provides important information
with regards to the correlation of EVs’ size distribution and their dielectric properties, it is
not feasible to report the exact causes of their impedance differences given the fact that each
subpopulation is different in more than one biophysical and/or biochemical parameter.
Thus, the EIS can be utilized as a tool to provide a rapid detection of EVs of different sizes,
and a comprehensive downstream analysis of EVs’ molecular profiles will be required to
further study the effects of their membrane or cytosolic cargos.

4. Conclusions

In summary, this study has reported a label-free biosensor for detection of EVs based
on their unique dielectric properties. The system consisted of a micropipette-based dielec-
trophoretic device integrated with an EIS to measure the impedance of immobilized vesicles
at a wide range of frequencies. The detection principle was mathematically modeled based
on an equivalent circuit and was in agreement with empirical results when nanovesicles
with known dielectric properties were tested. In addition, the system showed that EVs
could be discriminated from lipoproteins which shared similar biophysical properties but
differed in their biochemical compositions. Moreover, the system showed sensitivity for
detecting EVs with different membrane compositions but the same cytosolic contents at
a wide frequency spectrum (10–50 MHz). In addition, the impedance of EVs harvested
from cells in different culture conditions and thus different functionality in terms of pro-
inflammatory effect were detected at intermediate and high frequency ranges (10 MHz to
50 MHz).

Furthermore, the sensor could detect EVs derived from different cellular origins,
which could be further utilized to rapidly characterize EVs in diagnostic and therapeutic
applications. We also illustrated the capability of the EIS to differentiate EVs at different size
distributions, which presented the heterogeneity of their dielectric properties associated
with their biochemical properties. Overall, this novel biosensor opens up a new way
for rapid, label-free, and non-invasive characterization of a cluster of EVs (~1 million
nanovesicles) based on their unique dielectric properties which can be associated with their
charge-dependent membrane and cytosolic molecular contents. This technique also has
great potential to be further evolved as a diagnostic tool for the detection of pathogenic
EVs and can be applied for monitoring EV cargos in personalized therapeutics.

Supplementary Materials: The following supporting information [50–69] can be downloaded at:
https://www.mdpi.com/article/10.3390/bios12020104/s1, Figure S1: (a) NTA results of liposomes
CH:PC(1:10). (b) NTA result of liposomes CH:PC(10:1) synthesized by extrusion method; Figure S2:
(a) An in vivo strategy to label EVs with GFP in a hepatocyte-specific manner. Recombination
results in an inversion, and the region between the lox66–lox71 sites is reversed. EVtS-GFP can
be expressed under the control of Cre-recombinase. (b) EXtS-GFP line was bred with albumin-
cre mice (EXtS-GFPAlb-cre mice). Microscopy image showed the representative patterns of GFP
expression in liver cells. (c) (i) Extracellular vesicles were collected from the conditioned medium
of primary hepatocytes from EVtS-GFP mice (Alb-Cre negative and positive). (ii) Western blot
analysis of GFP in collected EVs and lysates. The Flotillin-2/Flot2 was used as an EV marker;
Figure S3: NTA results of EVs extracted from culture media of (a) control and (b) green fluorescent
protein (GFP+) transgenic mouse primary hepatocytes; Figure S4: NTA results of EVs extracted from
culture medium of HuH-7 cell lines: (a) control, (b) palmitate acid, (c) mixture of palmitate acid
and GW4869; Figure S5: (a) Diagram of the electrical impedance measurement system (not to scale).
The system consists of two modules: (1) a set of platinum electrodes (OD = 0.51 mm) placed across
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the micropipette (length = 3 cm), to apply 10 V/cm DC for vesicle entrapment; (2) another set of
platinum electrodes (OD = 130 µm) were previously placed across the pipette tip 20 µm apart via
a multi-micromanipulator system and the impedance signals were recorded and analyzed with a
trans-impedance amplifier. (b) A picture of the setup in the microscope stage showing a micropipette
tip immersed in 10 µL PBS solution. Polydimethylsiloxane (PDMS) chamber with a 1 mm diameter
opening was fabricated to fix the position of the micropipette. Trapping electrode was placed 2 mm
away from the pipette tip; Figure S6: Data analysis based on the raw data obtained from the HF2LI
impedance analyzer. (a) The output signals (raw data) were record as amplitude (mV) and phase
(◦) at a wide frequency spectrum (0.5 MHz to 50 MHz). (b) The impedance spectrum obtained by
converting the output amplitude signal to impedance based on the equivalent circuit; Figure S7:
Schematic diagram of the HF2LI impedance analyzer. Rin (50 Ω) and Rs (50 Ω) are intrinsic resistors
coupled in the impedance analyzer. Zmix represents the impedance of a cluster of particles, Vin is the
input voltage (100 mV), and Vout represents the measured output signal; Figure S8: Experimental
data showing the magnitude opacity comparison among empty pipette (before entrapment) and
liposome clusters extracted at two different time intervals at 20–50 MHz. ** p < 0.05; Figure S9:
(a) An equivalent circuit model for the impedance measurement system. Liposomes in suspension
are modeled as a capacitor Cp (membrane) and a resistor Rp (cytoplasm) in series based on the
Foster and Schwan’s simplified circuit model. (b) A magnitude opacity spectrum that exemplifies
impedance shifts (dashed lines) upon a resistance change (∆Rp) and capacitance change (∆Cp) of
particles. (c) Diagram of a single-shell model, representing a single vesicle in suspension. εm and σm
represent the permittivity and conductivity of the medium; εmem and σmem depict the permittivity
and conductivity of the membrane; εi and σi describe the permittivity and conductivity of the lumen;
Figure S10: The magnitude opacity comparison of EVs derived from wildtype primary hepatocytes
(GFP−) and GPF+ hepatocytes at (i)–(iii) 20–40 MHz. (** p < 0.05, n = 15.); (iv) Bode plot of GFP−
and GFP+ EVs as a function of frequency measured between 0.5 MHz and 50 MHz; Figure S11: Bode
plot (amplitude (mV) and phase (◦)) of EVs from human hepatocellular carcinoma cell lines under:
normal culture medium (EVs), PA-treated condition (EVs (PA)), and the mixture of PA- and GW4869
(EVs (PA + GW))-treated conditions, as a function of frequency measured between 0.5 MHz and
50 MHz; Figure S12: Magnitude opacity comparison of EVs derived from A549 non-small cell lung
cancer (NSCLC) cell line and very low-density (VLD) lipoprotein at (i)–(iii) 20–40 MHz. (** p < 0.05,
n = 12.) (iv) Bode plot of NSCLC-EV and VLD lipoprotein as a function of frequency measured
between 0.5 MHz and 50 MHz; Figure S13: Magnitude opacity spectrum of EVs extracted from
human umbilical vein endothelial cells (HUVECs) and epithelial human breast cancer (MDA-MB-231)
cells. (iii) Bode plot of EVs from HUVEC and MDA-MB-231 cells as a function of frequency measured
between 0.5 MHz and 50 MHz; Figure S14: The magnitude opacity of EVs derived from MDA-MB-231
cell line with different size ranges measured at (i)–(iii) 20–40 MHz. (** p < 0.05, n = 15.) (iv) Bode plot
of four EV subsets as a function of frequency measured between 0.5 MHz and 50 MHz.
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